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Abstract 

Ecologists increasingly rely on Bayesian methods to fit capture-recapture models. 

Capture-recapture models are used to estimate abundance while accounting for imper-

fect detectability in individual-level data. A variety of implementations exist for such 

models, including integrated likelihood, parameter-expanded data augmentation, and 

combinations of those. Capture-recapture models with latent random effects can be 

computationally intensive to fit using conventional Bayesian algorithms. We identify 

alternative specifications of capture-recapture models by considering a conditional rep-

resentation of the model structure. The resulting alternative model can be specified in 
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a way that leads to more stable computation and allows us to fit the desired model in 

stages while leveraging parallel computing resources. Our model specification includes 

a component for the capture history of detected individuals and another component for 

the sample size which is random before observed. We demonstrate this approach using 

three examples including simulation and two data sets resulting from capture-recapture 

studies of different species. 

Keywords: abundance, Bayesian filtering, MCMC, population estimation 

1 Introduction 

Formulations of statistical models for data arising from capture-recapture (CR) studies have 

evolved as our understanding of the models has improved, as technology has advanced, and 

as researchers have sought to extend them using hierarchical specifications. In particular, 

Bayesian implementations of CR models remain popular for learning about wildlife popula-

tion demographics (Royle et al., 2013). Parameter-expanded data augmentation (PX-DA) 

approaches in Bayesian CR implementations have led to a variety of useful generalizations 

to accommodate heterogeneity. The use of PX-DA is intuitive, but can increase computing 

requirements and could obscure other helpful model formulations. 

Fully hierarchical CR models implemented using standard Markov chain Monte Carlo 

(MCMC) methods (Royle and Converse, 2014) often result in poorly mixed MCMC sam-

ples. As a result, approaches based on integrated likelihoods are often sought (e.g., Efford, 

2011; Yackulic et al., 2020). Numerical integration approaches commonly used to fit CR 

models can be more stable (Bonner and Schofield, 2014; King et al., 2016) but can also be 

computationally intensive. We explore conditionally specified CR model formulations and 

consider recursive implementation strategies for fitting them. These methods allow us to 
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leverage parallel computing environments to fit CR models to data. Also, conditional speci-

fication allows us to generalize CR models in ways that would not be apparent otherwise. In 

what follows, we present the hierarchical capture-recapture model using parameter-expanded 

data augmentation and then show how a conditional specification of the model can be useful 

in recursive computing. We show that alternative CR model specifications become apparent 

when fitting the model in stages: first while conditioning on the observed data (y1:n) and 

sample size (n) and second when updating the inference using the sample size itself 

Conventional CR models utilize data comprising binary detections of a subset of indi-

vidual animals from a wildlife population when they are individually recognizable (either 

naturally or by artificial marking). Bayesian CR models are often implemented using a 

parameter-expanded data augmentation (PX-DA) approach (Royle et al., 2007; Royle and 

Dorazio, 2012). In this setting, individuals are observed over a set of sampling periods (or 

“occasions”) j = 1, . . . , J , and binary detection/nondetection measurements yi,j for a set of n 

observed individuals are recorded. It is often assumed that yi,j are conditionally independent 

across occasions and the population is “closed” with respect to changes in demography and P  movement. Thus, the count y J
i = j=1 yi,j represents the number of detections of individual 

i with conditional mixture binomial distribution 

⎧ ⎪⎪⎪⎨Binom(J, p) , zi = 1 
yi ∼ , (1) ⎪⎪⎪⎩1{yi=0} , zi = 0 

where zi is a latent population membership indicator for i = 1, . . . ,M , with M chosen so 

that it provides a realistic upper bound for population abundance (usually M >> n, where 

n is the number of observed individuals). In this type of PX-DA scenario, the data are 

augmented with all-zero capture histories such that yi = 0 for all i = n + 1, . . . ,M and the 
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latent indicators are modeled as zi ∼ Bern(ψ) (Royle, 2009). After the data are observed, 

zi = 1 for i = 1, . . . , n and the remaining zi for i = n + 1, . . . ,M are treated as unknown 

latent variables. 

In the Bayesian setting, priors are specified for the detection probability p and mem-

bership probability ψ in the homogeneous CR model in (1). The PX-DA procedure in-PMduces a binomial process model on the total abundance of animals N = i=1 zi such that 

N ∼ Binom(M, ψ). When the prior for ψ is uniform (i.e., ψ ∼ Beta(α, β) with α = β = 1), 

it implies a discrete uniform prior for N with support {0, 1, . . . ,M} when marginalized over 

ψ (but see Link (2013) and Villa and Walker (2014) for varying perspectives on this choice 

of prior). 

Abundance models based on CR data have been generalized in a variety of ways, most 

of which are based on heterogeneity in detection probability such that pi is allowed to vary. 

In some cases, pi is expressed as a function of environmental features or endogenous char-

acteristics associated with individual i. As CR models have been extended to accommodate 

spatially-explicit information that contributes to heterogeneity in pi such as distance between 

the center of an individual’s activity region and the detector, they have also become more 

challenging to implement. 

In what follows, we reformulate Bayesian CR models based on a conditional partitioning 

of the likelihood that is motivated by a multistage computing procedure. This allows us to 

use recursive Bayesian computing methods to fit CR models to data. These methods can 

facilitate implementation by allowing us to perform many of the necessary calculations in 

parallel between computing stages. 

We review multistage Bayesian computing and then show how to apply it to the homo-

geneous CR model which suggests a way to formulate a broad class of capture-recapture 

models such that they are amenable to multistage computing strategies. We extend the 
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approach to heterogeneous CR models and demonstrate it using data collected as part of a 

study of salamanders in Great Smoky Mountains National Park and a study of snowshoe 

hares in central Colorado, USA. 

2 Multistage Computing for Capture-Recapture 

We present a recursive Bayesian computing procedure that involves two or more stages to 

fit the CR model to data. A variety of multistage computing strategies may be used with 

this framework including sequential Monte Carlo (SMC; Chopin et al. 2013) and the meta-

analytic two-stage MCMC procedure described by Lunn et al. (2013) that was generalized 

by Hooten et al. (2021), where it was referred to as “prior-proposal recursive Bayesian” 

(PPRB) computation. Recursive approaches to fitting certain classes of Bayesian ecological 

models have been demonstrated (e.g., Hooten et al., 2016; Gerber et al., 2018; McCaslin 

et al., 2021; Feuka et al., 2022; Leach et al., 2022), but have been less commonly used in 

Bayesian population modeling using capture-recapture data. 

Our approach to multistage Bayesian computing relies on the ability to partition the 

data into two or more components and then write the posterior distribution as a product of 

conditional posterior distributions for each data partition given all those that were assimi-

lated before it. In the context of PX-DA and the conventional CR model with homogeneous 

detection probability that we presented in the previous section, the full posterior distribution 

can be written as 

! 
MY 

[p, ψ, z(n+1):M |y1:M ] ∝ [yi|p, zi][zi|ψ] [p][ψ] , (2) 
i=1 

where zi = 1 for i = 1, . . . , n and z(n+1):M = (zn+1, . . . , zM )
0 are unknown binary membership 

variables. In this specification, we use bracket notation to denote probability distributions 
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(Gelfand and Smith, 1990) and express the conditional data model as 

[yi|p, zi] = zi[yi|p] + (1 − zi)1{yi=0} , (3) 

where [yi|p] is a binomial probability mass function with J trials and probability p and the 

indicator function 1{yi=0} equals one when its condition is met and zero otherwise. The 

product of data and process models can be marginalized over zi to yield the full likelihood 

component for individual i 

[yi|p, ψ] = ψ[yi|p] + (1 − ψ)1{yi=0} , (4) 

which implies a mixture that is equivalent to a zero-inflated binomial model. 

Following King et al. (2016), we partition the data into those that were observed y1:n 

and those that were augmented y(n+1):M (as zeros). This allows us to express the posterior 

distribution from (2) as proportional to (with respect to p and ψ) the product of two terms 

[p, ψ|y1:n, y(n+1):M , n] ∝ [y(n+1):M |p, ψ, y1:n, n][p, ψ|y1:n, n] , (5) 

where we have used the marginalized data model in (4) to reduce notation with respect to 

the latent variables zi. Critically, our partitioning scheme depends on n (the number of 

observed individuals). Conditioning on n implies that we know which of the M possible 

individuals in the superpopulation were observed. Thus, the second term on the right-hand 

side of (5) can be written as 

 ! Y n

[p, ψ|y1:n, n] ∝ [yi|p, yi > 0] [n|p, ψ][p][ψ] , (6) 
i=1 
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where the conditional data model in (6) is a zero-truncated binomial with PMF 

[y |p]
[yi|p, yi > 0]  i∝ , (7)

1 − (1 − p)J 

such that [yi|p] is a binomial probability mass function. 

The number of observed individuals is the sum of individual-level indicator variables that P
  express which individuals were detected/undetected as n = M

1i=1 {yi>0}. Conditional on p

and ψ, the probability of detecting an individual from the superpopulation is 

Pr(1{yi>0} = 1|p, ψ) =  ψ(1 − (1 − p)J) , (8) 

and 1{yi>0} are conditionally independent Bernoulli trials before y1:n are observed. Thus, the 

number of observed individuals is distributed conditionally as n ∼ [n|p, ψ] = Binom(M, ψ(1− 

(1 − p)J ) under this model. 

In most other recursive implementations, we would need to evaluate the conditional data 

distribution [y(n+1):M |p, ψ, y1:n, n] in the first term on the right-hand side of (5). However, 

in this PX-DA situation where y(n+1):M = 0 are augmented data, the conditional data Q
distribution is proportional to M

1i=n+1 {yi=0} = 1. Thus, we do not need to consider the

augmented data y(n+1):M in this framework, only the observed data y1:n and the sample size 

n. The data augmentation merely suggests that we can reformulate the homogeneous CR 

model as in (6). 

Specifications like that shown in (6) have associated multistage computing strategies. 

In our case, the specification involves a model for the observed data conditioned on n and 

the model parameters (e.g., p and ψ) and also a model for n conditioned on the parameters. 

Similar CR model specifications were discussed by Borchers and Efford (2008) and differ from 

capture-recapture model specifications that are based on N , the total abundance, directly 
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(e.g., King et al., 2016). Neither Borchers and Efford (2008) nor King et al. (2016) leveraged 

the formulation to facilitate recursive Bayesian computing. 

In the case of the homogeneous CR model we described, we can fit it recursively in the 

following way. For the first stage, we fit a model using Bayesian methods and a stochastic 

sampling procedure (e.g., importance sampling, MCMC, Hamiltonian Monte Carlo) based 

on the conditional data model and priors for p and ψ in (6) comprising a temporary posterior 

distribution proportional to  ! Y n

[yi|p, yi > 0] [p][ψ] . (9) 
i=1 

Then, in the second stage of the procedure, we use a randomly selected first-stage sample 

(p(∗), ψ(∗)) as a proposal in either an importance (e.g., Chopin, 2002) or Metropolis-Hastings 

ratio depending on whether SMC or MCMC is preferred for the second stage. For MCMC, 

the second-stage Metropolis-Hastings ratio can be written as 

[n|p(∗), ψ(∗)] 
r = , (10)

[n|p(k−1), ψ(k−1)] 

for MCMC iteration k and we let p(k) = p(∗) and ψ(k) = ψ(∗) with probability min(r, 1); we re-

tain p(k) = p(k−1) and ψ(k) = ψ(k−1) otherwise (Supporting Information, Appendix A; Hooten 

et al. 2021). The second stage does not involve tuning parameters and is unsupervised. 

After the first stage, the resulting sample for the model parameters p and ψ can be used 

to compute all possible numerators (and hence also denominators) of (10) in parallel. For the 

homogeneous CR model, a parallelized intermediate computing step may not be necessary 

because the conditional mass function of n can be evaluated quickly. However, in the hetero-

geneous CR models that follow, we need to use numerical or stochastic integration techniques 

to compute the components of the Metropolis-Hastings ratio (10) and parallelization leads 

to substantial reductions in computing time. 
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PMIn the PX-DA framework based on the hierarchical CR model, N = i=1 zi is treated 

as a derived quantity. In a recursive framework, we obtain an MCMC sample for N in a 

third computing stage where N0 is sampled from its full-conditional distribution as N0
(k) ∼ 

(k))J (k)
Binom(M − n, ψ(k)(1 − p(k))J /(ψ(k)(1 − p + 1 − ψ(k))) and then N (k) = n + N0 for 

MCMC iteration k = 1, . . . , K. The quantity N0 represents the undetected individuals from 

the superpopulation that were part of our study population. Critically, our model fit does 

not depend on this third stage, but the inference we obtain about abundance N as a derived 

quantity is fully Bayesian. This is in contrast to the “empirical Bayes” estimator proposed 

by Dorazio (2013) which depends on a point estimate of N0 that is based on maximum 

likelihood estimators of the parameters. 

We demonstrate the application of this approach to multistage Bayesian computing by 

fitting the hierarchical CR model to simulated data in the Supporting Information, Appendix 

B. We compared inference from both the conventional single-stage MCMC algorithm and 

the PPRB procedure and illustrated their equivalence. 

3 Generalizations and Alternative Models for n 

An important aspect of expressing the posterior distribution as in (6) is that it admits other 

specifications of the model for the number of observed individuals n. In the previous section, 

we derived a conditional binomial distribution for n that is consistent with the assumptions 

of the original PX-DA implementation of the homogeneous CR model. Alternatively, our 

reformulation of the model allows us to specify any conditional model for n; for example, 

we could specify a conditional Poisson model for n instead. Similar Poisson models for n 

(and N) have been suggested previously (e.g., Borchers and Efford, 2008; Johnson et al., 

2010; Dorazio, 2013; Schofield and Barker, 2014; King et al., 2016). It is well-known that 
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as M → ∞ (common in PX-DA implementations of CR models) and ψ → 0 such that 

λ = ψM is constant, then the binomial converges in distribution to the Poisson such that 

n ∼ Pois(λ(1 − (1 − p)J )). Critically, the true generating mechanisms are not known for 

real data and thus the flexibility we gain by generalizing the conditional model for n can 

help accommodate a wider range of scenarios. Furthermore, certain specifications of the 

conditional model for n may facilitate the implementation of CR models, as we show in the 

examples that follow. 

Consider the hierarchical CR model with heterogeneous detection probability that varies 

by individual and is implemented using PX-DA such that y1:n are observed counts of detec-

tions for a set of n individuals and y(n+1):M = 0 represent the augmented individuals (Royle 

and Dorazio, 2008; Schofield and Barker, 2014). The conventional hierarchical specification 

for this heterogeneous CR model is yi ∼ ψ[yi|p 1i] + (1 − ψ) {yi=0} with the individual-specific 

detection probabilities modeled as logit(pi) ∼ N(µ, σ2) for i = 1, . . . ,M . This model treats 

the detection probabilities as random effects and thus requires priors [µ] and [σ2]. 

The heterogeneous CR model is a good candidate for recursive computing strategies 

because it can be challenging to implement (King et al., 2016; White and Cooch, 2017). It 

can be reformulated as described in the previous section based on a recursive implementation 

where we condition on n and pi which yields the zero-truncated binomial data model for 

positive counts yi ∼ [yi|pi]/(1 − (1 − pi)J ) for i = 1, . . . , n (Borchers and Efford, 2008). 

However, to improve stability of the first-stage algorithm, we marginalize over p and write 

the associated posterior distribution for this model as 

[µ, σ2, ψ|y 2 2
1:n, n] ∝ [y1:n|µ, σ , n][n|µ, σ , ψ][µ][σ2][ψ] , (11) 

where we describe its components in what follows. The integrated data model in (11) can 
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be expressed as 

n ZY 
[y1:n|µ, σ2 , n] = [yi|pi, yi > 0][logit(pi)|µ,  σ2, yi > 0]dlogit(pi), (12) 

i=1 

which is the probability of observing capture histories y1:n given those n individuals were 

observed. We described the conditional data model [yi|pi, yi > 0] in (7) and because of the 

heterogeneity, we also need to condition on yi > 0 in the distribution for logit(pi). Thus, we 

write the conditional process model in (12) 

 Pr(yi > 0|logit(pi),  σ2
2 µ, )[logit(p )|µ, σ2]

[logit(pi)|µ, i
σ , yi > 0] = R , (13)

Pr(yi > 0|logit(pi), µ, σ2)[logit(pi)|µ, σ2]dlogit(pi) 

(1 − (1 − pi)J )[logit(pi)|µ, σ2] 
= R , (14)

(1 − (1 − p)J )[logit(p)|µ, σ2]dlogit(p) 

which allows us to rewrite (12) as 

Qn R [yi|2 i=1 pi][logit(p
2

i)|µ, σ ]dlogit(pi)
[y1:n|µ, σ , n] = �R �n . (15)

(1 − (1 − p)J )[logit(p)|µ, σ2]dlogit(p) 

The integrated conditional distribution for n from the joint distribution in (11) can be 

calculated as the M -dimensional integral 

Z 
[n|µ, σ2, ψ] = [n|p1:M , ψ][logit(p1:M )|µ, σ2]dlogit(p1:M ) , (16) 

Q
where [logit(p1:M )|µ,  σ2] = M [logit(pi)|µ, σ2

i=1 ] and the conditional distribution [n|p1:M , ψ] is 

Poisson-binomial with M trials and probabilities ψ(1−(1−pi)J ) for i = 1, . . . ,M (Fernández 

and Williams, 2010), as implied by the conventional heterogeneous CR model. For refer-

ence, a Poisson-binomial distribution represents the sum of independent Bernoulli random 

variables, each with its own success probability. However, the Poisson-binomial PMF is 
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numerically inefficient to calculate, often requiring a Fourier transform approach. 

Alternatively, we could specify that each detection indicator is Poisson distributed with 

intensity ψ(1 − (1 − pi)J ). Then, if we assume large M and conditionally indepenent detec-PM P
tions, the sum n = 1i=1 {yi>0} can be modeled as n M∼ Pois(ψ − − J 

i=1 (1  (1  pi) )). The

Poisson PMF is much more numerically tractable and leads to a faster numerical approxi-

mation of (16). 

To fit the model with the posterior distribution in (11) using the PPRB approach, we 

first obtain a sample from the posterior distribution associated with the observed data y1:n 

and then assimilate the number of observed individuals n in a second stage. There are 

several important implementation details that arise for this heterogeneous CR model. In a 

first computing stage, we use a standard algorithm to obtain a MCMC sample based on the 

joint distribution [y1:n|µ, σ2, n][µ][σ2][ψ], which requires Metropolis-Hastings updates for µ 

and σ2 . We can obtain a Monte Carlo sample for ψ from its prior because it does not appear 

in the conditional data model. 

Using the MCMC sample resulting from the first stage, we evaluate [n|µ, σ2, ψ] for all 

realizations of the parameters in parallel. This intermediate computing step approximates 

the integrated PMF for n using Monte Carlo integration based on (16), or other numerical 

approach (see King et al. 2016 for a quadrature method). 

Then, in the second computing stage, we use a random draw from the first stage MCMC 

sample as the proposal {µ(∗), σ2(∗), ψ(∗)} and update using the Metropolis-Hastings ratio 

[n|µ(∗), σ2(∗), ψ(∗)] 
r = , (17)

[n|µ(k−1), σ2(k−1), ψ(k−1)] 

where we use the relevant numerator in (17) from the parallel computing output using a look-

up table. This parallel computing procedure is similar to pre-fetching (Brockwell, 2006), but 
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for the entire Markov chain. 

In a third computing stage, we sample the population abundance parameter using the 

MCMC output from the second stage and an approach similar to what we described for the 

homogeneous model. Thus, to obtain a MCMC sample for N based on the heterogeneous 

   (k)
model, we draw N0 from its full-conditional distribution and  (k)

let N (k) = n + N0 . P
For example, if we specified our conditional model [n M|p1:M , ψ] as Pois(ψ i=1 (1 − (1 −

pi)
J )), then we obtain a MCMC sample for N by drawing 

(k) ¯N0 ∼ Pois(ψ(k)(M − n)) , (18) 

¯where the term ψ(k) is the full-conditional probability of population membership for an aug-

mented individual averaged over the conditional distribution of logit(p) and is homogeneous 

for all i = n + 1, . . . ,M . We ¯calculate ψ( k) as 

Z � � 
ψ(k)(1 −(k)  p)J 

ψ̄ = [logit(p)|µ(k), σ2(k)]dlogit(p) , (19)
ψ(k)(1 − p)J + 1 − ψ(k) 

for k = 1, . . . , K second-stage MCMC iterations. 

To assess the sampling strategy and study design, it is common to infer the “power 

to detect,” which is the probability of detecting a randomly selected individual from the 

population in J sampling occasions (e.g., Dupont et al., 2021). In closed-population models 

with homogeneous detection probability p, the conditional power to detect is calculated as 

Pr(ỹ > 0|z̃ = 1, p) = 1 − (1 − p)J . This quantity can be readily extended to Bayesian CR 

13 



models with heterogeneous detectability by considering the posterior power to detect 

Z 
Pr(ỹ > 0|z̃ = 1, y) = 1{ỹ> 0}[ỹ| z̃ = 1, y]dỹ  , (20) Z Z Z Z 

= 1{ỹ> 0}[ỹ| p̃][logit( p̃) |µ, σ2][µ, σ2|y]dlogit(p̃) dµdσ2dỹ  , (21) 

which is a derived posterior predictive quantity. We can use composition sampling to obtain 

a MCMC sample ỹ(k) for k = 1, . . . , K and then Monte Carlo integration to approximate the P
posterior power to detect as Pr(ỹ > 0|z̃ = 1, y) = K

1k=1 {ỹ(k)>0}/K. We can also compute 

E(n/N |y) as an alternative way to represent power to detect. 

3.1 Application: Salamander abundance 

We demonstrate the PPRB approach to implementing the heterogeneous CR model using a 

data set comprised of encounter histories based on J = 4 sampling occasions for red-cheeked 

salamander (Plethodon jordani). These data were collected in Great Smoky Mountains 

National Park in a 15 m × 15 m fenced plot to ensure closure of the population under 

study (Bailey et al., 2004; Hooten and Hefley, 2019). The measurement process resulted in 

n = 93 observed individuals with 78, 11, and 4 detected on 1, 2, and 3 sampling occasions, 

respectively. This species is known to have low detectability, thus we augmented the data 

with M − n = 1407 all-zero encounter histories, which implies M = 1500 total individuals 

in our superpopulation. 

A variety of factors can result in heterogeneous capture probabilities for red-cheeked 

salamanders (Bailey et al., 2004). To account for individually varying detectability, we fit 

heterogeneous CR models to these data using the two-stage PPRB procedure. For compar-

ison, we fit two heterogeneous CR models; one based on the conditional Poisson-binomial 

assumption for n and the other based on the conditional Poisson assumption for n. We 
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specified priors for both models as: µ ∼ N(−1, 1), σ2 ∼ IG(0.01, 0.01), and ψ ∼ Beta(1, 1). 

We fit the models using K = 500000 MCMC iterations on a 28-core machine with 2.5 

Ghz processors. The first stage algorithm required approximately 16.2 minutes. The second 

stage algorithms required 9.3 hours for the Poisson-binomial version and only 26.2 minutes 

for the Poisson version. For comparison, the time per effective MCMC sample was 0.037 

minutes for the Poisson-binomial, 0.003 for the Poisson, and 0.107 for a single-stage im-

plementation of the model (using JAGS; Plummer 2003). These results imply the recursive 

Poisson implementation was two orders of magnitude faster per effective sample size than the 

single-stage algorithm. This highlights an advantage in having the flexibility to generalize 

the model specification by modifying the conditional distribution for n. 

The posterior results are summarized in Figure 1. Fitting the two heterogeneous CR 

models results in remarkably similar posterior distributions for the parameters µ, σ2 , and ψ 

(Figure 1a-c). The inference for abundance N was also similar for the two models (Figure 1d). 

Figure 1: Marginal posterior distributions for a) µ, b) σ2 , c) ψ, and d) N . Distributions 
shown are a result of the multistage Bayesian algorithms associated with the model with 
Poisson-binomial (solid orange) and Poisson (dashed blue) assumption for n. Subfig-
ure d shows marginal posterior probability mass functions for N as smoothed lines for 
comparison purposes due to the extent of the support. Priors shown as dashed gray lines. 
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The conventional heterogeneous CR model with Poisson-binomial distribution for n had a 

slightly smaller posterior mean abundance (E(N |y) = 310.8) than the model with Poisson 

distribution for n (E(N |y) = 312.3) but identical 95% credible interval [181, 626]. Similarly, 

for both models, the posterior power to detect was approximately Pr(ỹ > 0|z̃ = 1, y) = 

0.33 for this species, based on J = 4 sampling occasions. This result was the same as 

E(n/N |y) numerically and implies that we have a 33% chance of detecting a randomly 

selected individual in the population. 

4 Multistage Computing for Spatial Capture-Recapture 

We can apply the multistage computing procedure described in previous sections to fit spatial 

CR (SCR; Royle and Young 2008) models. In the spatially explicit setting, individuals may 

be detected at an array of “traps” (i.e., detectors) located at positions xl for l = 1, . . . , L. 

Thus, we retain the CR data model from before 

⎧ ⎪⎪⎪⎨Binom(J, pi,l) , zi = 1 
yi,l ∼ , (22) ⎪⎪⎪⎩1{yi,l=0} , zi = 0 

for i = 1, . . . , n, n + 1, . . . ,M and where zi ∼ Bern(ψ) are binary variables indicating popu-

lation membership as before. Using PX-DA, the observed data are augmented with all-zero 

capture histories such that yi,l = 0 for i = n + 1, . . . ,M and l = 1, . . . , L. In SCR, hetero-

geneity in detection/capture probability is often characterized as a function of the distance 

between (unknown) individual-based activity centers si and the (known) trap locations xl. 

For example, we can use a logit link function such that 

logit(p 2
i,l) = β0 + β1||si − xl||2 , (23) 
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where we treat si as random effects with distribution si ∼ [s]. We note that alternative 

link functions (e.g., ‘cloglog’) are also popular in SCR models (e.g., Royle and Dorazio, 

2008; Hooten and Hefley, 2019). In many cases, the distribution [s] serves as a prior and is 

specified as a bivariate uniform distribution over the study area, which implies a complete 

spatial random point process for si before the data are observed. Various approaches have 

been proposed to generalize the model for si such as allowing it to be a heterogeneous spatial 

point process (e.g., Sutherland et al., 2015; Diana et al., 2022). 

Following the procedure we described in the previous section, we express the posterior 

distribution associated with the SCR model as 

 " #! Yn � X � L

[β, ψ|Y1:n, n] ∝ yi � β, yi,l > 0 [n|β, ψ][β][ψ] , (24) 
i=1 l=1 

and describe its components in what follows. The integrated data model in (24) can be 

expressed as " # � X � L R
[y� i|pi][si]dsi 

yi β, yi,l > 0 = R QL (25) 
(1 − (1 − p )J 

i,l )[si]dsil=1 l=1 Q
using the same arguments as in the previous section, where [y L

i|pi] = l=1 [yi,l|pi,l] is a

product over binomial PMFs with J trials. 

The conditional distribution of n is 

Z 
[n|β, ψ] = [n|S1:M , ψ][S1:M ]dS1:M , (26) 

Q
where the joint prior for the activity centers is [S M

1:M ] = [si] and [n|i=1 S1:M , ψ] is either

Poisson-binomial under the conventional PX-DA model specification or, as we demonstrate P  Q
in the example that follows, Poisson with intensity M

i=1 ψ(1  L− l=1(1 − pi,l)J ) such that 

pi,l = logit−1(β0 + β1||si − xl||22). This Poisson intensity is derived as before by considering 
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the number of observed individuals as a sum of detection indicators. In the context of our P
SCR model, n = M

1 PL 1 PL  i=1 { y >0}, where each { y >0} is a binary random variable 
l=1 i,l l=1 i,l

with success probability 

P (1 P
{ L |y >0} = 1 pi, ψ) = 1 − P (1 P

{ L  = 0|y >0} pi, ψ) , (27)
l=1 i,l  l=1 i,l ! Y L

= 1 − ψ P (yi,l = 0|pi,l) + 1 − ψ , (28)  l=1 ! Y L

= ψ  1 − (1 − pi,l)
J . (29) 

l=1 

We note that (29) reduces to the nonspatial heterogeneous CR probability of detection when 

there is a single trap (L = 1). Thus, assuming large M and conditional independence, we 

treat each probability in (29) as an intensity and sum across M individuals in the superpop-

ulation to obtain the total Poisson intensity for n. Alternatively, for the Poisson-binomial 

model with M trials, we use (29) as probabilities for i = 1, . . . ,M . 

To fit this version of the SCR model using recursive Bayesian computing strategies, we 

use the same sequence of stages described in the previous section. In stage 1, we use MCMC 

to fit the model with joint distribution 

 " #! Yn � X � L

yi � β, yi,l > 0 [β][ψ] , (30) 
i=1 l=1 

which involves Metropolis-Hastings updates for β, but direct Monte Carlo sampling for ψ 

from its prior because it does not appear in the integrated data model. After we acquire the 

stage 1 MCMC sample, we evaluate the conditional PMF [n|β, ψ] for all realizations of β 

and ψ from the first stage in parallel. This intermediate step requires numerical integration 

(e.g., Bonner and Schofield, 2014) to approximate (26) and thus parallelization improves 

computational time substantially. 
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In stage 2, we use PPRB to update the model parameters using joint random draws from 

the first stage MCMC sample as proposals {β(∗), ψ(∗)} and the Metropolis-Hastings ratio 

[n|β(∗), ψ(∗)] 
r = . (31) 

[n|β(k−1), ψ(k−1)] 

This second stage can be performed quickly using a look-up table for the pre-computed 

conditional PMFs for n resulting from the first stage. 

We follow the procedure described in the previous section to obtain a MCMC sample 

for population abundance N in a third computing stage. Under the SCR model based on a 

 (k)
conditional Poisson assumption for n, we sample N0 as 

(k) 
N0 ∼ ¯Pois(ψ(k)(M − n)) , (32) 

(
and then let N (k) = n  k) 

+ N0 for k = 1, . . . , K second-stage MCMC iterations. This form 

of full-conditional updating is possible because, after we condition on n, we know that 

the additional undetected individuals (N0) from our population are indistinguishable and 

independent with full-conditional membership probability 

 Z (k) 
Q !

L (k)
(k) ψ l (1 −=1  pQ l )J 

ψ̄ =  [s]ds , (33) 
  

ψ(k) L (k)
(1 − p )J + 1 − ψ(k) 

l=1 l 

(k) 1 (k) (k
where p = logit− )

(β + β ||s − x ||2l 0 1 l 2) for k = 1, . . . , K second-stage MCMC iterations. 

Furthermore, the sampling of N0 can be performed in parallel post hoc because all quantities 

in the full-conditional distribution (32) have already been obtained in the second computing 

stage. 

We can calculate the posterior power to detect for the SCR model using a similar approach 

as described in the previous section. However, because we have collected CR data across an 
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 ���

��

entire trap array, the probability of detecting a random individual in J sampling occasions 

is ! 
L ZX 

Pr ỹl > 0 z̃ = 1, Y = 1{ 
PL ỹl>0}[ỹ|z̃ = 1, Y]dỹ , (34)

l=1 
l=1 

which involves a multidimensional integral, but can still be approximated using composition 

sampling to obtain a posterior predictive MCMC sample for ỹl 
(k) 

for l = 1, . . . , L and k = 

1, . . . , K. Monte Carlo integration can then be used to calculate the posterior power to �PL 
� PKdetect as Pr l=1 ỹl > 0 z̃ = 1, Y = k=1 1{ 

PL ỹ  >0}/K. We also report E(n/N |Y) for (k) 
l=1 l 

both models as an alternative way to infer the power to detect. 

4.1 Application: Snowshoe hare abundance 

We demonstrate the PPRB approach to implementing the SCR model using a data set 

comprised of encounter histories of n = 13 snowshoe hares (Lepus americanus) based on 

J = 5 sampling occasions at an array of L = 84 traps in central Colorado, USA (Ivan 

et al., 2014) during winter 2007. The snowshoe hare SCR data are shown in Figure 2 on 

a regular grid of trap locations spaced 50m apart at which individuals were captured with 

live traps and marked using passive integrated transponder tags that identified individuals 

on recapture (data in Appendix C). 

We fit the SCR model with both the Poisson-binomial and Poisson conditional distri-

butions for n to the data shown in Figure 2. For priors, we specified β ∼ N(0, 1000 · I), 

ψ ∼ Beta(1, 1), and si ∼ Unif(A), where A is a rectangular region extending 200 m beyond 

the trap array in each direction (dashed region in Figure 2; 66.5ha area). We assumed a 

total of M = 200 in the superpopulation, which implies M − n = 187 augmented individuals 

with all-zero encounter histories. However, similar to our implementation of the heteroge-

neous model in the previous section, we do not actually augment the data set to fit this 

20 



Figure 2: SCR data for n = 13 snowshoe hare individuals over a 7 × 12 array of L = 84 
traps spaced 50m apart. Positions of numbers represent trap locations in array and 
values correspond to the number of detections for each individual at each trap (cases 
with yi,l > 0 shown in bold). Support for activity centers s is shown as a dashed box; 
expanded 200 m in each direction from the extent of the trap array. 

SCR model. Instead, M is involved in computing the components (26) of the second stage 

Metropolis-Hastings ratios (31). 

We fit the models using K = 100000 MCMC iterations, which required 117.75 minutes 

for stage one. Stage two (including the intermediate parallel stage to evaluate the partially 

integrated full-conditional distributions for n) in the Poisson-binomial case required 5.24 

minutes and 1.36 minutes total for the Poisson case. For comparison, a single-stage algorithm 

(in JAGS) required 2.81 minutes per effective sample, whereas the Poisson-binomial and 

Poisson recursive algorithms only required 0.021 and 0.019 minutes per effective sample 

respectively. For this SCR model, the recursive algorithms were substantially faster than 

the single-stage algorithm relative to effective sample size, but similar among themselves 

(although the Poisson case was 4 times faster than the Poisson-binomial per raw iteration). 

These computing speed characteristics are a function of the number of augmented individuals 

(M − n) and power to learn the unknown parameters given the available data. 
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The posterior results from fitting the SCR model with conditional Poisson-binomial and 

Poisson assumptions for n to the snowshoe hare data are summarized in Figure 3. Our results 

Figure 3: Marginal posterior distributions for a) β0, b) β1, c) ψ, and d) N . Distributions 
shown are a result of the multistage Bayesian algorithm used to fit the SCR model with 
conditional Poisson-binomial (orange) and Poisson (blue) assumption for n. Subfigure 
d shows marginal posterior probability mass functions for N . 

indicate that the capture probabilities of snowshoe hares are small in general (i.e., E(p|Y) ≈ 

0.07 for a trap placed at the individual activity center using either model specification) and 

they decrease away from the activity centers as we expect given the space use mechanism 

associated with the SCR model (e.g., E(p|Y) ≈ 0.025 for a trap 100m away from the 

individual activity center using either model specification). In fact, Figure 4 shows the 

estimated detection function associated with our SCR models over a range of distances 

spanning half the maximum distance in the study trap array. These results indicate the two 

models are very similar and both with very low probability of detecting an individual with a 

trap farther than 200 m from the individual’s activity center (i.e., outside our study area). 
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Figure 4: Pointwise 95% credible intervals (shaded and hashed) and posterior means 
(solid and dashed) for the detection function p based on fitting the SCR model with 
Poisson-binomial (P-b; orange) and Poisson (Pois; blue) conditional models for n. 

We obtained a posterior sample for abundance N as described previously, by computing 

¯ (k) (k)
ψ(k), sampling N0 in parallel, and letting N (k) = n + N0 . Based on the Poisson-binomial 

model, we estimated posterior mean abundance as E(N |Y) = 26.6 with a 95% posterior 

credible interval of (17, 40). The Poisson model resulted in E(N |Y) = 26.8 with a 95% 

posterior credible interval of (17, 42). Thus, despite the low detection probability, with J = 5 

sampling occasions, approximately half of the individuals in the population were observed 

(n = 13) with only a few individuals possibly going undetected in our study area. In fact, the � � P  posterior power to detect for both models was approximately Pr L
l=1 ỹl > 0|z̃ = 1, Y = 

0.51 based on J = 5 sampling occasions for a random individual from our population in the 

study area (dashed region in Figure 2). The alternative power to detect (i.e., E(n/N |Y)) 

was 0.51 for both forms of the model. 
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5 Discussion 

A variety of approaches to formulating and implementing CR models have been developed 

since early work in this area in the mid-20th century (Schofield and Barker, 2016). Many 

modern implementations of CR models are Bayesian, and a substantial portion of those rely 

on some form of data augmentation strategy (Durban and Elston, 2005; Royle and Dorazio, 

2012). The data augmentation perspective is intuitive and facilitates model generalizations 

that can account for real-world complexities such as the effect of animal space use patterns 

on the detection function associated with an array of traps. However, as these data sets grow 

in size and variety, conventional algorithms to fit complicated CR models to augmented data 

sets may not be computationally efficient (Yackulic et al., 2020). 

Following King et al. (2016), we showed how to reformulate a large class of CR models 

in a way that is based on the intuitive PX-DA framework. We then showed how to fit 

them using multistage computing strategies. The natural partitioning of observed versus 

augmented data illuminates an explicit conditioning on the number of observed individuals 

n, which, in turn, has its own conditional model that depends on parameters and is implied 

by the PX-DA scheme. Similar model specifications have been derived from alternative 

perspectives (e.g., Borchers and Efford, 2008; King et al., 2016) but have not been leveraged 

to facilitate multistage Bayesian computing strategies. 

Conditional perspectives are not new in the analysis of CR data (e.g., Sanathanan, 1972; 

Huggins, 1989, 1991; Worthington et al., 2015; King et al., 2016). However, writing CR 

models as a product of a conditional distribution for the detections and a distribution for 

sample size allows for new model formulations. For example, in cases where individuals 

may be clustered in the population due to family groups or social structure, it may be 

advantageous to specify an overdispersed count model such as a negative binomial or quasi-

Poisson (e.g., Ver Hoef and Boveng, 2007). Conversely, if individuals are more regularly 
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distributed in the population due to mechanisms such as territoriality, an underdispersed 

count model such as a Conway-Maxwell Poisson could be specified (e.g., Shmueli et al., 2005). 

These model formulations involve additional parameters and may benefit from additional 

data, but our conditional strategy for representing the model provides a way to accommodate 

these extra sources of dependence in future studies. 

Using a recursive implementation, we showed how to fit CR models in two stages. The 

first computing stage fits a zero-truncated CR model to the observed data (of dimension n 

only). We then resample the first-stage output based on a secondary algorithm that assimi-

lates the sample size information n. For MCMC specifically, calculating the necessary ratios 

in the second stage can be a computing bottleneck because it requires numerical integration. 

However, we can accelerate the second computing stage substantially by evaluating the com-

ponents in parallel between stages. Thus, the first-stage only involves n observations, the 

intermediate parallel computation scales with the number of available cores, and the second 

stage only requires a look-up table to compute the necessary ratios. Inference for abundance 

N can be obtained after model fitting, where the undetected number of individuals N0 is 

sampled from its full-conditional distribution. This final step can also be parallelized to 

reduce computation time. 

Our application of recursive computing techniques to fit CR models aligns well with 

other recent developments, including multiple imputation and the explicit consideration of 

ancillarity in these types of models (Worthington et al., 2015; Schofield and Barker, 2016). 

A promising area of future research should seek to formally connect the ancillarity concepts 

with recursive computing strategies. Our approach also aligns well with other calls for 

Rao-Blackwellization (i.e., marginalization) in the Bayesian implementation of CR models 

(e.g., Yackulic et al., 2020). One additional benefit of the multistage computing approach 

to implementing these models is that the first computing stage can be performed using 
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automatic Bayesian software that may incorporate adaptive tuning techniques and alleviate 

the need for supervised MCMC algorithms altogether. 

For completeness, we note that a variety of other approaches exist for implementing CR 

models, including Dirichlet process approaches (Manrique-Vallier, 2016; Diana et al., 2020), 

numerical integration (Coull and Agresti, 1999; Borchers and Efford, 2008), and transdimen-

sional methods like reversible-jump MCMC (King and Brooks, 2008; McLaughlin, 2019). In 

fact, King et al. (2016) noted that working with the integrated likelihood based on the PX-

DA model formulation may be sufficient for fitting certain classes of CR models. Thus, 

recursive computing strategies may not always be necessary. However, our focus is to illumi-

nate alternative ways to specify CR models that may not have been apparent otherwise. The 

resulting models themselves could be implemented using a variety of computing strategies 

depending on the goals and constraints of the study. Finally, as integrated population models 

become more commonly used to borrow strength from multiple data sources (e.g., Williams 

et al., 2017; Jahid et al., 2022), model specifications that leverage multistage computing and 

parallel processing will become increasingly useful. 
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Appendices for “Multistage Hierarchical Capture-Recapture 

Models” 

Appendix A 

To fit the homogeneous CR model using a single-stage MCMC algorithm, we consider the 

joint posterior distribution for p and ψ. Under the PX-DA framework, this posterior distri-

bution can be written as 

[p, ψ|y1:n, y(n+1):M , n] ∝ [y(n+1):M |p, ψ, y1:n, n][p, ψ|y1:n, n] , (35) 

∝ [y(n+1):M |p, ψ, y1:n, n][y1:n|p, n][n|p, ψ][p][ψ] , (36) 

∝ [y1:n|p, n][n|p, ψ][p][ψ] , (37) 

where the full-conditional distribution of y(n+1):M is proportional to one when conditioned 

on n (and hence drops out of the right hand side) and the conditional distribution of y1:n is 

proportional to the product of zero-truncated binomials 

Qn [yi|p]
[y1:n|p, n] ∝ i=1 . (38)

(1 − (1 − p)J )n 

For a given joint proposal distribution [p, ψ]∗ , the associated Metropolis-Hastings ratio to 

update p and ψ jointly is 

[y | (∗)
1:n p , n][n|p(∗), ψ(∗)][p(∗)][ψ(∗)][p(k−1), ψ(k−1)]∗ 

r = . (39) 
[y |p(k−1), n][n|p(k−1), ψ(k−1)][p(k−1)][ψ(k−1)][p(∗)1:n , ψ(∗)]∗ 

To implement the model using PPRB following Hooten et al. (2021), we obtain an initial 

MCMC sample for p and ψ by fitting the CR model to the observed data while conditioning 



on fixed and known n. The posterior distribution for the first stage is proportional to 

[y1:n|p, n][p][ψ] , (40) 

with respect to p and ψ, and the associated first-stage Metropolis-Hastings ratio is 

[y |p (∗), n][p(∗)][ψ(∗)][p(k−1)1:n , ψ(k−1)]∗ 

r = . (41)
[y |p(k−1), n][p(k−1) (

1:n ][ψ k−1)][p(∗), ψ(∗)]∗ 

At this first stage, we use a temporary proposal distribution [p, ψ]∗ that is convenient. 

For the second stage of the PPRB implementation, we assume that the proposal distri-

bution is 

[p, ψ] ∗ ∝ [y1:n|p, n][p][ψ] , (42) 

which is equivalent to the first-stage posterior, and randomly sample (with replacement) joint 

first-stage MCMC realizations to use as proposals in the second stage Metropolis-Hastings 

updates. The resulting second-stage Metropolis-Hastings ratio becomes 

[y (∗)
1:n|p , n][n|p(∗), ψ(∗)][p(∗)][ψ(∗)][p(k−1), ψ(k−1)]∗ 

r = , (43)
[y1:n|p(k−1), n][n|p(k−1), ψ(k−1)][p(k−1)][ψ(k−1)][p(∗), ψ(∗)]∗ 

[n|p(∗), ψ(∗)] 
= , (44)

[n|p(k−1), ψ(k−1)] 

because the proposal cancels with the data model and priors. Thus, the second-stage 

Metropolis-Hastings ratio is merely a quotient involving the conditional model for n and 

can be evaluated easily using the first-stage MCMC sample. 



Appendix B 

To demonstrate the recursive implementation of the hierarchical CR model, we fit the model 

to simulated data using the single-stage and two-stage approaches. To simulate CR data for 

this example, we set M = 100 individuals in the superpopulation, membership probability 

ψ = 0.4, and detection probability p = 0.25. Then we used the hierarchical model in Section 

2 as a generative process to simulate data based on J = 3 occasions which resulted in 

N = 39 individuals in our population, with n = 19 individuals observed by our measurement 

process. The simulated observed data yi, for i = 1, . . . , n, can be summarized by the values 

y = (1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1)0 . 

In the PX-DA implementation, we assumed M − n = 81 augmented individuals with 

all-zero capture histories. Thus, we assumed the same M as in our data simulation and this 

allows us to infer the true ψ. We note that the estimation of N is not constrained by M 

empirically in this example, therefore we could use larger values of M without influencing 

the inference for parameter p. 

We fit the hierarchical CR from Section 2 to our simulated data using two approaches: 

1) a standard single-stage MCMC algorithm for the hierarchical model and 2) a two-stage 

algorithm based on the recursive formulation of the same model. In both cases, we used 

K = 200000 MCMC iterations. The results of our analyses are summarized in Figure 5. The 

posterior comparison shown in Figure 5 indicates that the two-stage PPRB approach yields 

the same inference as the conventional single-stage MCMC algorithm. Both approaches fit 

exactly the same model, but the recursive framework suggests that other specifications for 

the conditional model for n (e.g., Poisson) are straightforward to implement. Furthermore, 

in more complicated models, we can benefit from parallel evaluation of the PMF for n which 

can improve stability and facilitate computation for large data sets. 



Figure 5: Marginal posterior distributions for a) p, b) ψ, c) N . Distributions shown are 
a result of the single-stage MCMC algorithm (black), first-stage of the two-stage MCMC 
algorithm (red), and second-stage of the two-stage MCMC algorithm (green). Subfigure 
c shows marginal posterior probability mass functions; black line shown for single-stage 
for comparison. 



Appendix C 

The snowshoe hare SCR data used to fit the model in Section 4 are presented below. The 
first column is the trap ID (i.e., [1, ] indicates trap 1), the second two columns correspond 
to the L = 84 trap locations X in meters, and the remaining 13 columns contain values that 
correspond to the sum of detections associated with each individual at each trap. 

[1,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[2,] 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[3,] 100 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

[4,] 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[5,] 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[6,] 250 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

[7,] 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[8,] 350 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

[9,] 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[10,] 450 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

[11,] 500 0 0 0 0 1 2 0 0 0 0 0 0 0 0 

[12,] 550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[13,] 0 -50 0 0 0 0 0 0 0 0 0 0 0 0 0 

[14,] 50 -50 1 0 0 0 0 0 0 0 0 0 0 0 0 

[15,] 100 -50 0 0 0 0 0 0 0 0 0 0 0 0 0 

[16,] 150 -50 0 0 0 0 0 0 0 0 0 0 0 0 0 

[17,] 200 -50 0 0 0 0 0 0 0 0 0 0 0 0 0 

[18,] 250 -50 0 0 0 0 0 0 0 0 0 0 0 0 0 

[19,] 300 -50 0 0 0 0 0 0 0 0 0 0 0 0 0 

[20,] 350 -50 0 0 0 0 0 1 0 0 0 0 0 0 0 

[21,] 400 -50 0 0 0 0 0 0 0 0 0 0 0 0 0 

[22,] 450 -50 0 0 0 0 0 0 0 0 0 0 0 0 0 

[23,] 500 -50 0 0 0 0 0 0 0 0 0 0 0 0 0 

[24,] 550 -50 0 0 0 1 0 0 0 0 0 0 0 0 0 

[25,] 0 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 

[26,] 50 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 

[27,] 100 -100 1 0 0 0 0 0 0 0 0 0 0 0 0 

[28,] 150 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 

[29,] 200 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 

[30,] 250 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 

[31,] 300 -100 0 0 2 0 0 0 1 0 0 0 0 0 0 

[32,] 350 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 

[33,] 400 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 

[34,] 450 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 

[35,] 500 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 

[36,] 550 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 

[37,] 0 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 

[38,] 50 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 

[39,] 100 -150 0 0 0 0 0 0 0 1 0 0 0 0 0 

[40,] 150 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 

[41,] 200 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 

[42,] 250 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 

[43,] 300 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 

[44,] 350 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 

[45,] 400 -150 0 0 2 0 0 0 0 0 0 0 0 0 0 



[46,] 450 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 

[47,] 500 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 

[48,] 550 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 

[49,] 0 -200 0 0 0 0 0 0 0 0 0 0 0 0 0 

[50,] 50 -200 0 0 0 0 0 0 0 0 0 0 0 0 0 

[51,] 100 -200 0 0 0 0 0 0 0 1 0 0 0 0 0 

[52,] 150 -200 0 0 0 0 0 0 0 0 0 0 0 0 0 

[53,] 200 -200 0 0 0 0 0 0 0 0 0 0 0 0 0 

[54,] 250 -200 0 0 0 0 0 0 0 0 0 0 0 0 0 

[55,] 300 -200 0 0 0 0 0 0 0 0 0 0 0 0 0 

[56,] 350 -200 0 0 0 0 0 0 0 0 0 0 0 0 0 

[57,] 400 -200 0 0 0 0 0 0 0 0 1 0 0 0 0 

[58,] 450 -200 0 0 0 0 0 0 0 0 0 0 0 0 0 

[59,] 500 -200 0 0 0 0 2 0 0 0 0 0 0 0 0 

[60,] 550 -200 0 0 0 0 0 0 0 0 0 2 0 0 0 

[61,] 0 -250 0 0 0 0 0 0 0 0 0 0 0 0 0 

[62,] 50 -250 0 0 0 0 0 0 0 0 0 0 0 0 0 

[63,] 100 -250 0 0 0 0 0 0 0 0 0 0 0 0 0 

[64,] 150 -250 0 0 0 0 0 0 0 1 0 0 0 0 0 

[65,] 200 -250 0 0 0 0 0 0 0 0 0 0 0 0 0 

[66,] 250 -250 0 0 0 0 0 0 0 0 0 0 0 0 0 

[67,] 300 -250 1 0 0 0 0 0 0 0 0 0 0 0 0 

[68,] 350 -250 0 0 0 0 0 0 0 0 2 0 0 0 0 

[69,] 400 -250 0 0 0 0 0 0 0 0 0 0 0 0 0 

[70,] 450 -250 0 0 0 0 0 0 0 0 0 0 0 0 0 

[71,] 500 -250 0 0 0 0 0 0 0 0 0 0 0 0 0 

[72,] 550 -250 0 0 0 0 0 0 0 0 0 1 1 0 0 

[73,] 0 -300 0 0 0 0 0 0 0 0 0 0 0 1 0 

[74,] 50 -300 0 0 0 0 0 0 0 0 0 0 0 0 1 

[75,] 100 -300 0 0 0 0 0 0 0 0 0 0 0 0 0 

[76,] 150 -300 0 0 0 0 0 0 0 0 0 0 0 0 0 

[77,] 200 -300 0 0 0 0 0 0 0 0 0 0 0 0 0 

[78,] 250 -300 0 0 0 0 0 0 0 0 0 0 0 0 0 

[79,] 300 -300 0 0 0 0 0 0 0 0 0 0 0 0 0 

[80,] 350 -300 0 0 0 0 0 0 0 0 0 0 0 0 0 

[81,] 400 -300 0 0 0 0 0 0 0 0 1 0 0 0 0 

[82,] 450 -300 0 0 0 0 0 0 0 0 1 0 0 0 0 

[83,] 500 -300 0 0 0 0 0 0 0 0 0 0 1 0 0 

[84,] 550 -300 0 0 0 0 0 0 0 0 0 0 1 0 0 
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